Jurnal Gaussian
Vol 8, No 1 (2019): Jurnal Gaussian

PENERAPAN METODEEXPECTED SHORTFALLPADA PENGUKURAN RISIKO INVESTASI SAHAM DENGAN VOLATILITAS MODEL GARCH

Nurul Fitria Fitria Rizani (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Mustafid Mustafid (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Suparti Suparti (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
28 Feb 2019

Abstract

One of the methods that can be used to measure stock investment risk is Expected Shortfall (ES). ES is an expectation of risk size which value is greater than Value at Risk (VaR), ES has characteristics of sub-additive and convex. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used to model stock data that has high volatility. Calculating ES is done with data that shows deviations from normality using Cornish-Fisher's expansion. This researchapplies the ES at the closing stock price of PT Astra International Tbk. (ASII), PT Bank Negara Indonesia (Persero) Tbk. (BBNI), and PT Indocement Tunggal Prakarsa Tbk. (INTP) for the period of 11 February 2013 - 31 March 2019. Based on the volatility of GARCH (1,1) analysis, we find ES calculation for each stock by 95% level  confidence. The ES for ASII shares is 4.1%, greater than the VaR value which isonly 2.64%.The ES for BBNI shares is 4.38%, greater than it’s VaR value which is only 2,86%. The ES for INTP shares is 6.22%, which is also greater than it’s VaR value which is only3,99%. The greather of VaR then Thegreather of ES obtained.Keywords: Expected Shortfall, Value at Risk, GARCH

Copyrights © 2019






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...