Mechatronics, Electrical Power, and Vehicular Technology
Vol 6, No 2 (2015)

Obstacle Avoidance Method for a Group of Humanoids Inspired by Social Force Model

Sadiyoko, Ali (Unknown)
Trilaksono, Bambang Riyanto (Unknown)
Mutijarsa, Kusprasapta (Unknown)
Adiprawita, Widyawardana (Unknown)



Article Info

Publish Date
30 Dec 2015

Abstract

This paper presents a new formulation for obstacle and collision behavior on a group of humanoid robots that adopts walking behavior of pedestrian crowd. A pedestrian receives position information from the other pedestrians, calculate his movement and then continuing his objective. This capability is defined as socio-dynamic capability of a pedestrian. Pedestrian’s walking behavior in a crowd is an example of a sociodynamics system and known as Social Force Model (SFM). This research is trying to implement the avoidance terms in SFM into robot’s behavior. The aim of the integration of SFM into robot’s behavior is to increase robot’s ability to maintain its safety by avoiding the obstacles and collision with the other robots. The attractive feature of the proposed algorithm is the fact that the behavior of the humanoids will imitate the human’s behavior while avoiding the obstacle. The proposed algorithm combines formation control using Consensus Algorithm (CA) with collision and obstacle avoidance technique using SFM. Simulation and experiment results show the effectiveness of the proposed algorithm.

Copyrights © 2015






Journal Info

Abbrev

mev

Publisher

Subject

Electrical & Electronics Engineering

Description

Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular ...