Jurnal Teknologi Informasi dan Ilmu Komputer
Vol 7 No 2: April 2020

Model Sistem Pendukung Keputusan Kelompok untuk Penilaian Gangguan Depresii, Kecemasan dan Stress Berdasarkan DASS-42

Sri Kusumadewi (Universitas Islam Indonesia)
Hepi Wahyuningsih (Universitas Islam Indonesia)



Article Info

Publish Date
18 Feb 2020

Abstract

Depresi, kecemasan dan stress merupakan tiga gangguan yang sering dijumpai di masyarakat. Ketiga gangguan tersebut memiliki gejala yang hampir mirip. Depression, Anxiety and Stress Scales (DASS) merupakan salah satu alat ukur yang dapat digunakan untuk mengukur tingkat keparahan ketiga gangguan tersebut. DASS dengan jumlah item/gejala sebanyak 42 item dikenal dengan nama DASS-42. Alat ukut ini membedakan dengan jelas item/gejala dari setiap gangguan. Setiap gangguan memiliki item yang mempengaruhi sebanyak 14 item. Pada penelitian ini dibangun model Sistem Pendukung Keputusan Kelompok (SPKK) yang memungkinkan para psikolog untuk berkolaborasi memberikan preferensi terkait prioritas gangguan yang akan terjadi apabila diketahui item/gejala tertentu menurut DASS-42. Preferensi diberikan dengan format ordered vectors. Untuk memudahkan proses agregasi/komposisi, selanjutnya dilakukan transformasi preferensi ke relasi preferensi fuzzy. Operator Ordered Weighted Averaging (OWA) digunakan untuk melakukan agregasi peferensi menjadi satu matriks. Proses seleksi alternatif terbaik dilakukan dengan menggunakan Quantifier Guided Dominance Degree (QGDD). Hasil pengujian menunjukkan bahwa ketepatan hasil SPKK terhadap DASS-42 adalah sebesar 71,43% (30 dari 42 item/gejala). Item/gejala yang beririsan secara signifikan antara gangguan kecemasan dan stress sebesar 16,67%. (7 dari 42), antara depresi dan kecemasan sebesar 9,52% (4 dari 42). Secara umum SPKK ini mampu mengakomodasi preferensi para pengambil keputusan dalam memberikan bobot pengaruh. Gangguan kecemasan dan gangguan stress memiliki gejala yang sangat mirip sehingga untuk beberapa item.gejala pada DASS-42 ada perbedaan yang cukup signifikan. AbstractDepression, anxiety and stress are three disorders that are often found in the community. These three disorders have almost identical symptoms. Depression, Anxiety and Stress Scales (DASS) is an psychological instrument that can be used to measure the severity of these disorders. DASS with a total of 42 items known as DASS-42. This instrument distinguishes clearly the symptoms of each disorder. Each disorder has 14 items affect. The three disorders have a number of symptoms that are similar, even a symptom may affect two or three disorders with different levels of influence. In this study, a Group Decision Support System (GDSS) model was developed so that psychologists can collaborate to give preference regarding priority of disorders that would occur if certain items / symptoms were identified by  DASS-42. Preferences are given in ordered vectors format. The preferences given by each decision maker aggregated to get a single preference. These preferences will be transformed to the fuzzy preference relation format. Ordered Weighted Averaging (OWA) operator used to aggregation process for all decision maker preference. The OWA operator are used to aggregate into one matrix. The best alternative selected by using Quantifier Guided Dominance Degree (QGDD). The test results show that the accuracy of the GDSS results on DASS-42 is 71.43% (30 of 42 items / symptoms). Symptoms that overlap significantly between anxiety and stress disorders are 16.67%. (7 of 42), between depression and anxiety by 9.52% (4 of 42). The GDSS is able to accommodate the preferences of decision makers in giving influence weight. Anxiety and stress disorder have very similar symptoms so that for some symptoms in the DASS-42 there are significant differences.

Copyrights © 2020






Journal Info

Abbrev

JTIIK

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen ...