Jurnal Matematika Sains dan Teknologi
Vol. 8 No. 2 (2007)

PERBANDINGAN METODE MODEL-BASED DENGAN METODE K-MEAN DALAM ANALISIS CLUSTER

Timbul Pardede (Universitas Terbuka)



Article Info

Publish Date
15 Aug 2007

Abstract

K-mean method is a clustering method in which grouping techniques are based only on distance measure among observed objects, without considering statistical aspects. Model-based clustering is a method that use statistical aspects, as its theoretical basis i.e. probability maximum criterion. This model has several variations with a variety of geometrical characteristics obtained by mean Gauss component. Data partition is conducted by utilizing EM (expectation-maximization) algorithm. Then by using Bayesian Information Criterion (BIC) the best model is obtained. This research aimed to comparing result of grouping methods between model-based clustering and K-mean clustering. The results showed that model-based clustering was more effective in separating overlap groups than K-mean.

Copyrights © 2007






Journal Info

Abbrev

JMST

Publisher

Subject

Agriculture, Biological Sciences & Forestry Mathematics Other

Description

Merupakan media informasi dan komunikasi para praktisi, peneliti, dan akademisi yang berkecimpung dan menaruh minat serta perhatian pada pengembangan Matematika, ilmu pengetahuan dan teknologi. Diterbitkan oleh Lembaga Penelitian dan Pengabdian kepada Masyarakat, Universitas ...