Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 4 No 1 (2020): Januari 2020

Komparasi Metode K-Nearest Neighbors (K-NN) Dengan Support Vector Machine (SVM) Untuk Klasifikasi Status Kualitas Air

Icha Gusti Vidiastanta (Fakultas Ilmu Komputer, Universitas Brawijaya)
Nurul Hidayat (Fakultas Ilmu Komputer, Universitas Brawijaya)
Ratih Kartika Dewi (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
21 Feb 2020

Abstract

Water quality status classification for the community is divided into 2 classes namely those that meet the standards and do not meet the standards for consumption. The field of object classification research has been carried out, making it possible to create technology in the field of object classification with high accuracy. There are many classification methods, in this study discussing the comparison between K-Nearest-Neighbors (KNN) algorithm and Support vector machine (SVM). Research on the variables in the KNN and SVM algorithm to determine the best variable in classification. Testing is done by the K-Fold method with a value of K = 5 on a dataset of water quality status. Tests carried out to get the optimal parameter value KNN with K = 7 and SVM with value of the maximum iteration value = 300, = 10−12, 𝜎 = 0.07, 𝜆 = 3, 𝛾 = 1.7, and 𝐶 = 1. This research resulted in an accuracy of KNN of 88.94% and SVM of 87.71%. It was observed that the K-Nearest-Neighbors (KNN) algorithm had higher accuracy than the Support vector machine (SVM) algorithm.

Copyrights © 2020






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...