Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 3 No 10 (2019): Oktober 2019

Klasifikasi Aktivitas Manusia menggunakan Algoritme Decision Tree C4.5 dan Information Gain untuk Seleksi Fitur

Vivy Junita (Fakultas Ilmu Komputer, Universitas Brawijaya)
Fitra Abdurrachman Bachtiar (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
13 Jan 2020

Abstract

Human activity recognition is one of the popular topics on both academic and commercial researchers. Some researchers have tried to classify human activity recognition but the result is unsatisfactory. Moreover, there is another problem with high dimensional human activity recognition dataset. The high dimensional of data set takes a longer computational time and makes the classification model be overfitting. One method that can be used to solve those problems is the classification using the Decision Tree C4.5 algorithm and Information Gain as selection feature method. Decision Tree C4.5 algorithm is a suitable method for continuous dataset and Information Gain is one of the filter methods in feature selection that can work well on high-dimensional dataset. This research also conducted various tests on some parameters such as the optimal number of features and the maximum depth tree that be used. Based on the test that has been done obtained the accuracy of 81% with 90% of the total number of all features (561 features) and 10 for the maximum depth for the tree.

Copyrights © 2019






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...