Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 3 No 11 (2019): November 2019

Pengelompokan Musik berdasarkan Emosi menggunakan Metode Transformasi Haar Wavelet

Natassa Anastasya (Fakultas Ilmu Komputer, Universitas Brawijaya)
Agus Wahyu Widodo (Fakultas Ilmu Komputer, Universitas Brawijaya)
Muh. Arif Rahman (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
24 Jan 2020

Abstract

Music consists of various genres and emotions, therefore it is important to group the music according to what the listener wants both based on the genre and the emotions they feel. As an example of an online music application that can automatically group music that makes it easy for listeners to play the desired music, music grouping is seen based on the similarity of certain characteristics. Another example is the Radio music player, where a common problem with radio broadcasters is to play and choose what songs to play. With the grouping of music automatically this will certainly be very helpful and more efficient for playing these songs automatically. Then this research will cluster songs based on the emotions of Broken Heart and Happy with feature extraction using the Haar Wavelet transformation method, then clustering using K-Means. The results of clustering will be evaluated using purity. The test is based on the song structure, a combination of statistical features, and the Haar Wavelet coefficient. Based on the results of all tests carried out obtained clustering with the highest purity value of 0.62.

Copyrights © 2019






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...