Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019

ICU Patient Prediction for Moving with Decision Tree C4.5 and Naïve Bayes Algorithm

Sumpena, Sumpena (Unknown)
Akbar, Yuma (Unknown)
Nirat, Nirat (Unknown)
Hengky, Mario (Unknown)



Article Info

Publish Date
29 Sep 2019

Abstract

Critical patients need intensive care and supervision by the medical team in the Intensive Care Unit (ICU), including ventilators, monitors, Central Venous Pressure (CVP), Electrocardiogram (ECG), Echocardiogram (ECHO), medical supply, and medical information that is fast, precise, and accurate. In the ICU treatment room requires data that needs to be processed and analyzed for decision making. This study analyzed the ventilator, CVP and also Sepsis Diagnosis related to the data of moving patients and patients dying. This study also uses the decision tree algorithm C.45 and Naive Bayes to determine the level of accuracy of patient care and supervision information in the ICU. The results showed that the decision tree algorithm C.45 has an accuracy of 81.55% and Naive Bayes of 81.54%. The decision tree C.45 algorithm has almost the same advantages as the Naive Bayes algorithm.

Copyrights © 2019






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...