Indonesian Journal of Electrical Engineering and Computer Science
Vol 18, No 2: May 2020

Illumination-robust face recognition based on deep convolutional neural networks architectures

Ridha Ilyas Bendjillali (Tahri Mohammed University)
Mohammed Beladgham (Tahri Mohammed University)
Khaled Merit (Tahri Mohammed University)
Abdelmalik Taleb-Ahmed (University of Valenciennes)



Article Info

Publish Date
01 May 2020

Abstract

In the last decade, facial recognition techniques are considered the most important fields of research in biometric technology. In this research paper, we present a Face Recognition (FR) system divided into three steps: The Viola-Jones face detection algorithm, facial image enhancement using Modified Contrast Limited Adaptive Histogram Equalization algorithm (M-CLAHE), and feature learning for classification. For learning the features followed by classification we used VGG16, ResNet50 and Inception-v3 Convolutional Neural Networks (CNN) architectures for the proposed system. Our experimental work was performed on the Extended Yale B database and CMU PIE face database. Finally, the comparison with the other methods on both databases shows the robustness and effectiveness of the proposed approach. Where the Inception-v3 architecture has achieved a rate of 99, 44% and 99, 89% respectively.

Copyrights © 2020