BIMASTER
Vol 9, No 3 (2020): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya

ESTIMASI PARAMETER MODEL SURVIVAL DISTRIBUSI EKSPONENSIAL PRIOR UNIFORM DENGAN METODE BAYESIAN ABSOLUTE ERROR LOSS FUNCTION

Bagus Setiadi (Universitas Tanjungpura)
Setyo Wira Rizki (Universitas Tanjungpura)
Nurfitri Imro’ah (Universitas Tanjungpura)



Article Info

Publish Date
30 May 2020

Abstract

Data survival adalah data yang menunjukkan waktu suatu individu atau objek dapat bertahan hidup hingga terjadinya suatu kegagalan atau kejadian tertentu. Pada penelitian ini dibahas mengenai estimasi parameter model survival distribusi eksponensial prior Uniform dengan menggunakan Bayesian absolute error loss function (AELF) dan diterapkan pada kasus penderita kanker paru-paru. Estimasi parameter model survival dimulai dengan mencari fungsi distribusi kumulatif, fungsi survival, kemudian menentukan fungsi likelihood, distribusi prior, dan posterior untuk metode Bayesian. Dari metode Bayesian AELF diperoleh dan fungsi survival kemudian diterapkan pada data pasien penderita kanker paru-paru untuk mengetahui peluang individu dapat bertahan hidup. Berdasarkan hasil estimasi metode Bayesian AELF untuk studi kasus penderita kanker paru-paru dapat diketahui bahwa peluang hidup pasien yang mengidap penyakit kanker paru-paru semakin lama akan semakin kecil (mendekati nol). Nilai mean absolute persentage error (MAPE) yang diperoleh dari fungsi survival dengan menggunakan metode Bayesian AELF adalah sebesar 0,485%. Hal ini berarti bahwa metode Bayesian AELF memiliki kemampuan estimasi yang sangat baik dalam mengestimasi peluang bertahan hidup pasien penderita kanker paru-paru. Kata kunci: Loss Function, Prior Uniform, Absolute Error

Copyrights © 2020






Journal Info

Abbrev

jbmstr

Publisher

Subject

Decision Sciences, Operations Research & Management Mathematics

Description

Bimaster adalah Jurnal Ilmiah berkala bidang Matematika, Statistika dan Terapannya yang terbit secara online dan dikelola oleh Jurusan Matematika FMIPA ...