Jurnal Riset Informatika
Vol. 4 No. 1 (2021): December 2021

CLASSIFICATION OF VEHICLE TYPES USING BACKPROPAGATION NEURAL NETWORKS WITH METRIC AND ECCENTRICITY PARAMETERS

Hendra Mayatopani (Universitas Pradita)
Rohmat Indra Borman (Universitas Teknokrat Indonesia)
Wahyu Tisno Atmojo (Universitas Pradita)
Arisantoso Arisantoso (Sekolah Tinggi Teknologi Informasi NIIT Jakarta)



Article Info

Publish Date
14 Dec 2021

Abstract

One of the efforts to break down traffic jams is to establish special lanes that can be passed by two, four, or more wheeled vehicles. By being able to recognize the type of vehicle can reduce congestion. Citran based vehicle classification helps in providing information about the vehicle type. This study aims to classify the type of vehicle using a backpropagation neural network algorithm. The vehicle image can be recognized based on its shape, then the backpropagation neural network algorithm will be supported by metric and eccentricity parameters to perform feature extraction. Then from the results of feature extraction with metric parameters and eccentricity, the object will be classified using a backpropagation neural network algorithm. The test results show an accuracy of 87.5%. This shows the algorithm can perform classification well.

Copyrights © 2021






Journal Info

Abbrev

jri

Publisher

Subject

Computer Science & IT

Description

Jurnal Riset Informatika, merupakan Jurnal yang diterbitkan oleh Kresnamedia Publisher. Jurnal Riset Informatika, berawal diperuntukan menampung paper-paper ilmiah yang dibuat oleh peneliti dan dosen-dosen program studi Sistem Informasi dan Teknik ...