Jurnal Statistika Universitas Muhammadiyah Semarang
Vol 1, No 2 (2013): Jurnal Statistika Universitas Muhammadiyah Semarang

VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS DENGAN METODE HIBRID SIMULATED ANNEALING– ALGORITMA GENETIKA

Adi Slamet Kusumawardana (Unknown)
- Irhamah (Unknown)



Article Info

Publish Date
13 Jan 2014

Abstract

Manajemen logistik memiliki peranan penting dalam suatu perusahaan yang bergerak dalam bidang logistik dan ekspedisi. Tujuan manajemen logistik yaitu mengantarkan produk ke konsumen tepat waktu dengan cara yang efektif dan efisien. Salah satu cara untuk mengoptimalkan sistem distribusi adalah dengan pengoptimalan transportasi. Salah satu permasalahan dalam transportasi adalah Vehicle Routing Problem. Vehicle Routing Problem with Stochastic Demands (VRPSD) merupakan perluasan dari VRP konvensional dengan kondisi permintaan konsumen di setiap lokasi diasumsikan mengikuti distribusi peluang yang telah diketahui. Dalam penelitian ini bertujuan untuk menyelesaikan Vehicle Routing Problem with Stochastic Demands menggunakan Hibrid Simulated Annealing – Algoritma Genetika. Simulated annealing adalah salah satualgoritma untuk optimasi, Simulated annealing berasal dari bidang metalurgi yaitu annealing. Algoritma ini digunakan untuk mencari pendekatan terhadap solusi optimum lokal. Algoritma genetika merupakan metode optimisasi yang menggunakan teori evolusi dan seleksi alam di dalam suatu populasi individu. Algoritma genetika menawarkan pemecahan persoalan dengan pendekatan terhadap solusi optimum global. Hibrid simulated annealing – algoritma genetika mencakup beberapa proses dasar, yaitu generate populasi, evaluasi, seleksi elitism, fitness, serta seleksi roulette wheel. Pada proses operasi algoritma genetika menggunakan crossover dan mutasi sedangkan operasi pada simulated annealing menggunakan mutasi dan proses annealing. Implementasi metode hibrid simulated annealing – algoritma genetika pada Vehicle Routing Problem with Stochastic Demands diharapkan dapat menghasilkan rute pengantaran barang dengan jarak dan biaya transportasi minimum.

Copyrights © 2013