Seminar Nasional Aplikasi Teknologi Informasi (SNATI)
2011

PEMANFAATAN JARINGAN SARAF TIRUAN UNTUK PENYELESAIAN PERMASALAHAN OPTIMASI NONLINIER

Victor Hariadi (Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember)
Rully Soelaiman (Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember)



Article Info

Publish Date
31 May 2012

Abstract

Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimasi dalam penyelesaiannya. Pendekatan optimasi sendiri menyediakan banyak alternatif metode yang dapat dipilihsesuai dengan karakteristik permasalahan yang akan diselesaikan. Penyelesaian permasalahan riil menggunakan pendekatan optimasi akan melibatkan model matematis. Model yang dibuat/digunakan akanmenentukan pada koridor teknik optimasi mana kita akan bekerja. Secara garis besar, permasalahan dalam teknik optimasi dapat berupa permasalahan (pemrograman) linier atau non linier. Sebenarnya kedua kelompok permasalahan ini masih memberikan ruang cukup luas bagi kegiatan riset yang bertujuan untuk merancang konsep atau metode penyelesaian yang lebih efisien. Namun pemrograman non linier menyisakan area yang lebih luas, mengingat model-model non linier seringkali memiliki bentuk yang lebih kompleks dan dinamis. Klas-klas pemrograman non linier dapat ditentukan dari bentuk Ddan karakteristik fungsi tujuan/obyekti serta dari keberadaan dan bentuk fungsi pembatasnya. Salah satu subklas dalam permasalahan pemrogramannonlinier adalah masalah pemrograman kuadratik dengan fungsi obyektif berbentuk fungsi konveks. Penelitian ini membahas penggunaan recurrent neural network untuk menyelesaikan permasalahan minimisasipemrograman kuadratik dengan batasan linier. Recurrent neural network digunakan karena mempunyai kelebihan pada strukturnya yang lebih sederhana dan kompleksitas yang lebih rendah untuk diimplementasikandaripada neural network yang digunakan sebelumnya untuk menyelesaikan permasalahan tersebut di atas. Ini menunjukkan bahwa recurrent neural network lebih stabil pada keadaan Lyapunov dan secara global mampumencapai konvergensi dalam waktu singkat.

Copyrights © 2011