KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal)
Vol 7, No 1 (2020)

OBJECT COUNTING PADA DATA VIDEO

Rudy Herteno (Unknown)
M. Reza Faisal (Unknown)
Radityo A Nugroho (Unknown)
Friska Abadi (Unknown)
Rahmat Ramadhani (Unknown)



Article Info

Publish Date
02 Mar 2020

Abstract

One object counting implementation is counting the number of road users from video data sources obtained from CCTV streaming. Video processing on CCTV is usually done on the server side by sending video data. If the need is only to determine the density of traffic, then the method is considered too expensive to be implemented because of the cost of internet connection and bandwidth that must be spent. The solution is to use a small computing device that can process the video first, and the calculation results are sent to the server regularly. In this study, a comparison between the Tensorflow Object Counting learning algorithm and the MOG2 Background Subtractor image processing algorithm with the aim to determine the accuracy of the calculation. The result is known that better accuracy is given by the MOG2 Background Subtractor technique and also the process is carried out using only a small percentage of the amount of memory and processor compared to the Tensorflow Object Counting technique. MOG2 Background Substractor technique is expected to be used on devices that have small data sourcesKeywords : Object Counting, Tensorflow, MOG2 Background SubstractorSalah satu implementasi object counting adalah menghitung jumlah pengguna jalan dari sumber data video yang didapat dari streaming CCTV. Pemprosesan video pada CCTV biasanya dilakukan disisi server dengan mengirimkan data video. Jika keperluannya hanya untuk mengetahui kepadatan lalu lintas, maka cara tersebut dinilai terlalu mahal untuk diimplementasikan karena biaya koneksi internet dan bandwidth yang harus dikeluarkan. Pemecahannya adalah menggunakan perangkat komputasi kecil yang dapat memproses video tersebut terlebih dahulu, dan hasil perhitungannya dikirimkan ke server secara berkala. Pada penelitian ini dilakukan perbandingan antara algoritma pembelajaran Tensorflow Object Counting dan algoritma image processing MOG2 Background Substractor dengan tujuan untuk mengetahui akurasi penghitungan. Hasilnya diketahui akurasi yang lebih baik diberikan oleh teknik MOG2 Background Substractor dan juga proses yang dilakukan hanya menggunakan prosentase jumlah memori dan prosessor yang kecil dibandingkan teknik Tensorflow Object Counting. Sehingga teknik MOG2 Background Substractor ini diharapkan dapat digunakan pada perangkat yang memiliki sumber data kecil. Kata kunci : Object Counting, Tensorflow, MOG2 Background Substractor.

Copyrights © 2020






Journal Info

Abbrev

klik

Publisher

Subject

Computer Science & IT

Description

KLIK Scientific Journal, is a computer science journal as source of information in the form of research, the study of literature, ideas, theories and applications in the field of critical analysis study Computer Science, Data Science, Artificial Intelligence, and Computer Network, published two ...