TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 13, No 3: September 2015

Burn Area Processing to Generate False Alarm Data for Hotspot Prediction Models

Imas S Sitanggang (Bogor Agricultural University)
Razali Yaakob (Universiti Putra Malaysia)
Norwati Mustapha (Universiti Putra Malaysia)
Ainuddin A. N (Universiti Putra Malaysia)



Article Info

Publish Date
01 Sep 2015

Abstract

Developing hotspot prediction models using decision tree algorithms require target classes to which objects in a dataset are classified.  In modeling hotspots occurrence, target classes are the true class representing hotspots occurrence and the false class indicating non hotspots occurrence.  This paper presents the results of satellite image processing in order to determine the radius of a hotspot such that random points are generated outside a hotspot buffer as false alarm data.  Clustering and majority filtering were performed on the Landsat TM image to extract burn scars in the study area i.e. Rokan Hilir, Riau Province Indonesia.  Calculation on burn areas and FIRMS MODIS fire/hotspots in 2006 results the radius of a hotspot 0.90737 km.  Therefore, non-hotspots were randomly generated in areas that are located 0.90737 km away from a hotspot. Three decision tree algorithms i.e. ID3, C4.5 and extended spatial ID3 have been applied on a dataset containing 235 objects that have the true class and 326 objects that have the false class. The results are decision trees for modeling hotspots occurrence which have the accuracy of 49.02% for the ID3 decision tree, 65.24% for the C4.5 decision tree, and 71.66% for the extended spatial ID3 decision tree.

Copyrights © 2015






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...