Razali Yaakob
Universiti Putra Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Ensemble deep learning for tuberculosis detection using chest X-Ray and canny edge detected images Stefanus Kieu Tao Hwa; Mohd Hanafi Ahmad Hijazi; Abdullah Bade; Razali Yaakob; Mohammad Saffree Jeffree
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (333.062 KB) | DOI: 10.11591/ijai.v8.i4.pp429-435

Abstract

Tuberculosis (TB) is a disease caused by Mycobacterium Tuberculosis. Detection of TB at an early stage reduces mortality. Early stage TB is usually diagnosed using chest x-ray inspection. Since TB and lung cancer mimic each other, it is a challenge for the radiologist to avoid misdiagnosis. This paper presents an ensemble deep learning for TB detection using chest x-ray and Canny edge detected images. This method introduces a new type of feature for the TB detection classifiers, thereby increasing the diversity of errors of the base classifiers. The first set of features were extracted from the original x-ray images, while the second set of features were extracted from the edge detected image. To evaluate the proposed approach, two publicly available datasets were used. The results show that the proposed ensemble method produced the best accuracy of 89.77%, sensitivity of 90.91% and specificity of 88.64%. This indicates that using different types of features extracted from different types of images can improve the detection rate.
Burn Area Processing to Generate False Alarm Data for Hotspot Prediction Models Imas S Sitanggang; Razali Yaakob; Norwati Mustapha; Ainuddin A. N
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 3: September 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i3.1543

Abstract

Developing hotspot prediction models using decision tree algorithms require target classes to which objects in a dataset are classified.  In modeling hotspots occurrence, target classes are the true class representing hotspots occurrence and the false class indicating non hotspots occurrence.  This paper presents the results of satellite image processing in order to determine the radius of a hotspot such that random points are generated outside a hotspot buffer as false alarm data.  Clustering and majority filtering were performed on the Landsat TM image to extract burn scars in the study area i.e. Rokan Hilir, Riau Province Indonesia.  Calculation on burn areas and FIRMS MODIS fire/hotspots in 2006 results the radius of a hotspot 0.90737 km.  Therefore, non-hotspots were randomly generated in areas that are located 0.90737 km away from a hotspot. Three decision tree algorithms i.e. ID3, C4.5 and extended spatial ID3 have been applied on a dataset containing 235 objects that have the true class and 326 objects that have the false class. The results are decision trees for modeling hotspots occurrence which have the accuracy of 49.02% for the ID3 decision tree, 65.24% for the C4.5 decision tree, and 71.66% for the extended spatial ID3 decision tree.
Fuzzy encoding with hybrid pooling for visual dictionary in food recognition Mohd Norhisham Razali; Noridayu Manshor; Alfian Abdul Halin; Norwati Mustapha; Razali Yaakob
Indonesian Journal of Electrical Engineering and Computer Science Vol 21, No 1: January 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v21.i1.pp179-195

Abstract

Tremendous number of f food images in the social media services can be exploited by using food recognition for healthcare benefits and food industry marketing. The main challenges in food recognition are the large variability of food appearance that often generates a highly diverse and ambiguous descriptions of local feature. Ironically, the ambiguous descriptions of local feature have triggered information loss in visual dictionary constructions from the hard assignment practices. The current method based on hard assignment and Fisher vector approach to construct visual dictionary have unexpectedly cause errors from the uncertainty problem during visual word assignation. This research proposes a method of combination in soft assignment technique by using fuzzy encoding approach and maximum pooling technique to aggregate the features to produce a highly discriminative and robust visual dictionary across various local features and machine learning classifiers. The local features by using MSER detector with SURF descriptor was encoded by using fuzzy encoding approach. Support vector machine (SVM) with linear kernel was employed to evaluate the effect of fuzzy encoding. The results of the experiments have demonstrated a noteworthy classification performance of fuzzy encoding approach compared to the traditional approach based on hard assignment and Fisher vector technique. The effects of uncertainty and plausibility were minimized along with more discriminative and compact visual dictionary representation.
Ensemble deep learning for tuberculosis detection Mohd Hanafi Ahmad Hijazi; Leong Qi Yang; Rayner Alfred; Hairulnizam Mahdin; Razali Yaakob
Indonesian Journal of Electrical Engineering and Computer Science Vol 17, No 2: February 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v17.i2.pp1014-1020

Abstract

Tuberculosis (TB) is one of the deadliest infectious disease in the world. TB is caused by a type of tubercle bacillus called Mycobacterium Tuberculosis. Early detection of TB is pivotal to decrease the morbidity and mortality. TB is diagnosed by using the chest x-ray and a sputum test. Challenges for radiologists are to avoid confused and misdiagnose TB and lung cancer because they mimic each other. Semi-automated TB detection using machine learning found in the literature requires identification of objects of interest. The similarity of tissues, veins and small nodules presenting the image at the initial stage may hamper the detection. In this paper, an approach to detect TB, that does not require segmentation of objects of interest, based on ensemble deep learning, is presented. Evaluation on publicly available datasets show that the proposed approach produced a model that recorded the best accuracy, sensitivity and specificity of 91.0%, 89.6% and 90.7% respectively.