TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 15, No 3: September 2017

Regression Modelling for Precipitation Prediction Using Genetic Algorithms

Asyrofa Rahmi (Universitas Brawijaya)
Wayan Firdaus Mahmudy (Universitas Brawijaya)



Article Info

Publish Date
01 Sep 2017

Abstract

This paper discusses the formation of an appropriate regression model in precipitation prediction. Precipitation prediction has a major influence to multiply the agricultural production of potatoes in Tengger, East Java, Indonesia. Periodically, the precipitation has non-linear patterns. By using a non-linear approach, the prediction of precipitation produces more accurate results. Genetic algorithm (GA) functioning chooses precipitation period which forms the best model. To prevent early convergence, testing the best combination value of crossover rate and mutation rate is done. To test the accuracy of the predicted results are used Root Mean Square Error (RMSE) as a benchmark. Based on the RMSE value of each method on every location, prediction using GA-Non-Linear Regression is better than Fuzzy Tsukamoto for each location. Compared to Generalized Space-Time Autoregressive-Seemingly Unrelated Regression (GSTAR-SUR), precipitation prediction using GA is better. This has been proved that for 3 locations GA is superior and on 1 location, GA has the least value of deviation level.

Copyrights © 2017






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...