TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 18, No 3: June 2020

Pulmonary rontgen classification to detect pneumonia disease using convolutional neural networks

Zuherman Rustam (University of Indonesia)
Rivan Pratama Yuda (University of Indonesia)
Hamimah Alatas (University of Indonesia)
Chelvian Aroef (University of Indonesia)



Article Info

Publish Date
01 Jun 2020

Abstract

Every organism is known to have different structural and biological system, specifically in human immunity. If the immune system weakens, the body is susceptible to disease especially pneumonia disease. Pneumonia disease is caused by the bacterium Streptococcus pneumonia, and according to the World Health Organization (WHO), it is identified as the leading cause of death in children worldwide, which is about 16%, for those under the age of 5. Meanwhile, someone who is predicted to have pneumonia by a doctor is recommended for an X-ray. Convolutional neural networks (CNNs) is an accurate method to help the doctor's predicted correctly. CNNs is divided into two important parts, feature extraction layer (convolutional layer and pooling layer) and fully connected layer. CNNs method is commonly used for image data classification. Therefore, CNNs is suitable to classify pneumonia based on lung X-ray in order to obtain accurate prediction results. And then, the results can be seen based on the graph of the accuracy value and the loss value. When CNNs method applied on the dataset, an accuracy rate of 97% was obtained. Based on accuracy rate, it shows that CNNs can be applied to image data (especially lung X-ray) for classification of pneumonia disease.

Copyrights © 2020






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...