Chelvian Aroef
University of Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Pulmonary rontgen classification to detect pneumonia disease using convolutional neural networks Zuherman Rustam; Rivan Pratama Yuda; Hamimah Alatas; Chelvian Aroef
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14839

Abstract

Every organism is known to have different structural and biological system, specifically in human immunity. If the immune system weakens, the body is susceptible to disease especially pneumonia disease. Pneumonia disease is caused by the bacterium Streptococcus pneumonia, and according to the World Health Organization (WHO), it is identified as the leading cause of death in children worldwide, which is about 16%, for those under the age of 5. Meanwhile, someone who is predicted to have pneumonia by a doctor is recommended for an X-ray. Convolutional neural networks (CNNs) is an accurate method to help the doctor's predicted correctly. CNNs is divided into two important parts, feature extraction layer (convolutional layer and pooling layer) and fully connected layer. CNNs method is commonly used for image data classification. Therefore, CNNs is suitable to classify pneumonia based on lung X-ray in order to obtain accurate prediction results. And then, the results can be seen based on the graph of the accuracy value and the loss value. When CNNs method applied on the dataset, an accuracy rate of 97% was obtained. Based on accuracy rate, it shows that CNNs can be applied to image data (especially lung X-ray) for classification of pneumonia disease.
Comparing random forest and support vector machines for breast cancer classification Chelvian Aroef; Yuda Rivan; Zuherman Rustam
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14785

Abstract

There are more than 100 types of cancer around the world with different symptoms and difficulty in predicting itsappearance in a person due to its random and sudden attack method. However, the appearance of cancer is generally marked by the growth of some abnormal cell. Someone might be diagnosed early and quickly treated, but the cancerous cell most times hides in the body of its victim and reappear, only to kill its sufferer. One of the most common cancers is breast cancer. According to Ministry of Health, in 2018, breast cancer attacked 42 out of every 100.000 people in Indonesia with approximately 17 deaths. In addition, the Ministry recorded a yearly increase in cancer patients. Therefore, there is adequate need to be able to determine those affected by this disease. This study applied the Boruta feature selection to determine the most important features in making a machine learning model. Furthermore, the Random Forest (RF) and Support Vector Machines (SVM) were the machine learning model used, with highest accuracies of 90% and 95% respectively. From the results obtained, the SVM is a better model than random forest in terms of accuracy.