TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 19, No 3: June 2021

Dialogue management using reinforcement learning

Binashir Rofi’ah (Institut Teknologi Bandung)
Hanif Fakhrurroja (Institut Teknologi Bandung)
Carmadi Machbub (Institut Teknologi Bandung)



Article Info

Publish Date
01 Jun 2021

Abstract

Dialogue has been widely used for verbal communication between human and robot interaction, such as assistant robot in hospital. However, this robot was usually limited by predetermined dialogue, so it will be difficult to understand new words for new desired goal. In this paper, we discussed conversation in Indonesian on entertainment, motivation, emergency, and helping with knowledge growing method. We provided mp3 audio for music, fairy tale, comedy request, and motivation. The execution time for this request was 3.74 ms on average. In emergency situation, patient able to ask robot to call the nurse. Robot will record complaint of pain and inform nurse. From 7 emergency reports, all complaints were successfully saved on database. In helping conversation, robot will walk to pick up belongings of patient. Once the robot did not understand with patient’s conversation, robot will ask until it understands. From asking conversation, knowledge expands from 2 to 10, with learning execution from 1405 ms to 3490 ms. SARSA was faster towards steady state because of higher cumulative rewards. Q-learning and SARSA were achieved desired object within 200 episodes. It concludes that RL method to overcome robot knowledge limitation in achieving new dialogue goal for patient assistant were achieved.

Copyrights © 2021






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...