TELKOMNIKA (Telecommunication Computing Electronics and Control)
Vol 8, No 2: August 2010

ENHANCED NEURO-FUZZY ARCHITECTURE FOR ELECTRICAL LOAD FORECASTING

Hany Ferdinandoa (Petra Christian University)
Felix Pasila (Petra Christian University)
Henry Kuswanto (Petra Christian University)



Article Info

Publish Date
01 Aug 2010

Abstract

Previous researches about electrical load time series data forecasting showed that the result was not satisfying. This paper elaborates the enhanced neuro-fuzzy architecture for the same application. The system uses Gaussian membership function (GMF) for Takagi-Sugeno fuzzy logic system. The training algorithm is Levenberg-Marquardt algorithm to adjust the parameters in order to get better forecasting system than the previous researches. The electrical load was taken from East Java-Bali from September 2005 to August 2007. The architecture uses 4 inputs, 3 outputs with 5 GMFs. The system uses the following parameters: momentum=0.005, gamma=0.0005 and wildness factor=1.001. The MSE for short term forecasting for January to March 2007 is 0.0010, but the long term forecasting for June to August 2007 has MSE 0.0011. 

Copyrights © 2010






Journal Info

Abbrev

TELKOMNIKA

Publisher

Subject

Computer Science & IT

Description

Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of ...