E-Jurnal Matematika
Vol 2 No 4 (2013)

PENERAPAN METODE LEAST MEDIAN SQUARE-MINIMUM COVARIANCE DETERMINANT (LMS-MCD) DALAM REGRESI KOMPONEN UTAMA

I PUTU EKA IRAWAN (Faculty of Mathematics and Natural Sciences, Udayana University)
I KOMANG GDE SUKARSA (Faculty of Mathematics and Natural Sciences, Udayana University)
NI MADE ASIH (Faculty of Mathematics and Natural Sciences, Udayana University)



Article Info

Publish Date
29 Nov 2013

Abstract

Principal Component Regression is a method to overcome multicollinearity techniques by combining principal component analysis with regression analysis. The calculation of classical principal component analysis is based on the regular covariance matrix. The covariance matrix is optimal if the data originated from a multivariate normal distribution, but is very sensitive to the presence of outliers. Alternatives are used to overcome this problem the method of Least Median Square-Minimum Covariance Determinant (LMS-MCD). The purpose of this research is to conduct a comparison between Principal Component Regression (RKU) and Method of Least Median Square - Minimum Covariance Determinant (LMS-MCD) in dealing with outliers. In this study, Method of Least Median Square - Minimum Covariance Determinant (LMS-MCD) has a bias and mean square error (MSE) is smaller than the parameter RKU. Based on the difference of parameter estimators, still have a test that has a difference of parameter estimators method LMS-MCD greater than RKU method.

Copyrights © 2013






Journal Info

Abbrev

mtk

Publisher

Subject

Mathematics

Description

E-Jurnal Matematika merupakan salah satu jurnal elektronik yang ada di Universitas Udayana, sebagai media komunikasi antar peminat di bidang ilmu matematika dan terapannya, seperti statistika, matematika finansial, pengajaran matematika dan terapan matematika dibidang ilmu lainnya. Jurnal ini lahir ...