E-Jurnal Matematika
Vol 7 No 3 (2018)

PENDEKATAN REGRESI SPLINE UNTUK MEMODELKAN POLA PERTUMBUHAN BERAT BADAN BALITA

NI LUH SUKERNI (Udayana University)
I KOMANG GDE SUKARSA (Udayana University)
NI LUH PUTU SUCIPTAWATI (Udayana University)



Article Info

Publish Date
02 Sep 2018

Abstract

The study is aimed to estimate the best spline regression model for toddler’s weight growth patterns. Spline is one of the nonparametric regression estimation method which has a high flexibility and is able to handle data that change in particular subintervals so thus resulting in model which fitted the data. This study uses data of toddler’s weight growth at Posyandu Mekar Sari, Desa Suwug, Kabupaten Buleleng. The best spline regression model is chosen based on the minimum Generalized Cross Validation (GCV) value. The study shows that the best spline regression model for the data is quadratic spline regression model with six optimal knot points. The minimum GCV value is 0,900683471925 with the determination coefficient equals to 0,954609.

Copyrights © 2018






Journal Info

Abbrev

mtk

Publisher

Subject

Mathematics

Description

E-Jurnal Matematika merupakan salah satu jurnal elektronik yang ada di Universitas Udayana, sebagai media komunikasi antar peminat di bidang ilmu matematika dan terapannya, seperti statistika, matematika finansial, pengajaran matematika dan terapan matematika dibidang ilmu lainnya. Jurnal ini lahir ...