E-Jurnal Matematika
Vol 2 No 4 (2013)

PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA

NI WAYAN YULIANI (Faculty of Mathematics and Natural Science, Udayana University)
I KOMANG GDE SUKARSA (Faculty of Mathematics and Natural Science, Udayana University)
I GUSTI AYU MADE SRINADI (Faculty of Mathematics and Natural Science, Udayana University)



Article Info

Publish Date
22 Jan 2014

Abstract

Multiple linear regression analysis with a lot of independent variable always makes many problems because there is a relationship between two or more independent variables. The independent variables which correlated each other are called multicollinearity. Principal component  analysis which based on variance covariance matrix is very sensitive toward the existence of outlier in the observing data. Therefore in order to overcome the problem of outlier it is needed a method of robust estimator toward outlier. ROBPCA is a robust method for PCA toward the existence of outlier in the data. In order to obtain the robust principal component is needed a combination of Projection Pursuit (PP) with Minimum Covariant Determinant (MCD). The results showed that the ROBPCA method has a bias parameter and Mean Square Error (MSE) parameter lower than Principal Component Regression method. This case shows that the ROBPCA method better cope with the multicollinearity observational data influenced by outlier.

Copyrights © 2013






Journal Info

Abbrev

mtk

Publisher

Subject

Mathematics

Description

E-Jurnal Matematika merupakan salah satu jurnal elektronik yang ada di Universitas Udayana, sebagai media komunikasi antar peminat di bidang ilmu matematika dan terapannya, seperti statistika, matematika finansial, pengajaran matematika dan terapan matematika dibidang ilmu lainnya. Jurnal ini lahir ...