Automata
Vol. 2 No. 1 (2021)

Kajian Literatur Named Entity Recognition pada Domain Wisata

Annisa Zahra (Universitas Islam Indonesia)
Ahmad Fathan Hidayatullah (Universitas Islam Indonesia)
Septia Rani (Universitas Islam Indonesia)



Article Info

Publish Date
17 Jan 2021

Abstract

Abstrak—Saat merencanakan perjalanan wisata, pencarian destinasi wisata merupakan hal yang umumnya dilakukan. Proses tersebut seringkali dilakukan menggunakan bantuan mesin pencari, yaitu dengan membaca artikel yang tersedia di internet dan ditulis oleh orang lain. Pada proses pencarian informasi tersebut, terkadang dibutuhkan waktu yang tidak sedikit karena perlu membaca artikel-artikel yang tersedia untuk memperoleh informasi yang relevan. Named Entity Recognition (NER) dapat digunakan dalam mendeteksi entitas nama pada suatu teks sehingga dapat membantu pengguna dalam menemukan informasi yang diinginkan. Makalah ini mengkaji sebanyak 8 literatur mengenai NER pada domain wisata yang didapat dari hasil pencarian pada Google Scholar dengan kata kunci “Tourism Named Entity Recognition”. Dari kajian literatur yang telah dilakukan, diperoleh informasi bahwa model NER yang paling banyak digunakan pada domain wisata adalah Bidirectional Encoder Representations from Transformers (BERT). Model BERT bertujuan untuk melakukan pelatihan representasi kata menggunakan konverter dua arah dengan menyesuaikan konteks pada sisi kiri dan kanan semua lapisan. Sehingga, penggunaan BERT dapat membantu mencegah terjadinya ambiguitas pada suatu kata yang mengakibatkan kesalahan pengenalan entitas. Hasil penelitian ini diharapkan dapat membantu dalam pengembangan NER pada domain wisata selanjutnya.

Copyrights © 2021






Journal Info

Abbrev

AUTOMATA

Publisher

Subject

Computer Science & IT

Description

Automata mempublikasikan penelitian internal mahasiswa dan dosen Teknik Informatik Universitas Islam Indonesia. Topik-topiknya mencakup: Informatika Teori dan Sistem Cerdas Forensika Digital Sains Data Rekayasa Perangkat Lunak Informatika ...