Indonesian Journal of Computing and Modeling
Vol 3 No 2 (2020)

Perbandingan Algoritma K-NN, SVM dan Random Forest untuk Klasifikasi Wilayah Risiko Kebakaran Lahan Pada Data Citra Landsat 8 OLI

Evan Geraldy Suryoto (Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Salatiga)
Sri Yulianto Joko Prasetyo (Fakultas Teknologi Informasi Universitas Kristen Satya Wacana Salatiga)



Article Info

Publish Date
02 Mar 2021

Abstract

Kebakaran lahan memiliki tingkat kerugian besar bagi yang terkena dampaknya. Dampak langsung yang dirasakan adalah adanya kabut asap yang mencemari udara di sekitar daerah kebakaran. Penelitian ini menggunakan beberapa indeks diataranya : Indeks yang dipakai antara lain ialah Enhanced Vegetation Index (EVI), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) dan Soil Adjusted Vegetation Index (SAVI). Data yang akan diteliti berupa Citra Satelit Landsat 8 OLI. Hasil analisis menggunakan korelasi pearson, rata-rata indeks memiliki korelasi kuat. Korelasi yang paling kuat ialah antara NDVI dengan SAVI dengan nilai korelasi 0,98. Hasil confusion matrix menunjukkan bahwa metode Random Forest adalah metode yang terbaik untuk penelitian ini, hal tersebut dapat dilihat dari akurasi yang bernilai 0,9995 dan Kappa yang bernilai 0,9897. Prediksi spasial menggunakan Inverse Distance Weighted (IDW) pada perhitungan yang telah dilakukan. Pengujian hubungan spasial antar kecamatan yang berpotensi kebakaran dilakukan dengan menggunakan analisis Moran's I.

Copyrights © 2020






Journal Info

Abbrev

icm

Publisher

Subject

Agriculture, Biological Sciences & Forestry Computer Science & IT Earth & Planetary Sciences Education Mathematics

Description

Fokus publikasi ICM mencakup : penemuan dan/atau penerapan metode baru, pengembangan algoritma optimal, kompleksitas algoritma dan pemanfataan model matematika atau statistika untuk eksplorasi dan analisis data. Makalah yang diterima dan dilanjutkan untuk proses review adalah makalah hasil ...