JURTEKSI
Vol 7, No 2 (2021): April 2021

KORELASI TIME TO LIVE TERHADAP QUERY TIDAK NORMAL PADA DNS MENGGUNAKAN BINARY LOGISTIC REGRESSION

Aminudin Aminudin (Program Studi Informatika Universitas Muhammadiyah Malang)
Eko Budi Cahyono (Program Studi Informatika Universitas Muhammadiyah Malang)



Article Info

Publish Date
01 Apr 2021

Abstract

Abstract: DNS plays a vital role in the operation of services on the internet. Almost all services on the internet are under DNS control, such as email, FTP, web apps, etc. So, it is not surprising that various malicious activities involve DNS services such as financial fraud, phishing, malware, and malicious activity, etc. Fortunately, in DNS there is a record with the name time to live which can be used to detect a query or the address accessed from the user is a normal query or an abnormal query. Therefore, the purpose of this study is to determine the correlation value between time to live and abnormal queries on passive DNS data using the Binary Logistic Regression model. The results showed that the Binary Logistic Regression method could model the correlation between TTL, elapsed, and bytes which have an optimal model F1 Score of 0.9997 and also have a condition close to the ideal state by using the Precision-Recall Curve (PRC) graph plot.            Keywords: Binary Logistic Regression; DNS Passive; Precision-Recall Curve (PRC); Query Abnormal  Abstrak: DNS memegang peranan yang vital di dalam berjalanya service di internet. Hampir seluruh layanan di internet berada di bawah kendali DNS seperti email, ftp, app web dll. Jadi, tidak mengherankan bahwa berbagai kegiatan jahat melibatkan layanan DNS seperti financial fraud, phising, malware dan aktivitas malicious dll. Untungnya, di dalam DNS tersimpan sebuah record dengan nama time to live yang dapat digunakan untuk mendeteksi sebuah query atau alamat yang diakses dari user tersebut bersifat query normal atau query tidak normal. Oleh karena itu, tujuan penelitian ini adalah untuk mengetahui nilai korelasi antara time to live dengan query tidak normal pada data passive DNS dengan menggunakan model Binary Logistic Regression. Hasil penelitian menunjukkan bahwa metode Binary Logistic Regression dapat memodelkan korelasi antara TTL, elapsed dan bytes yang memiliki model optimal F1 Score sebesar 0.9997 dan juga memiliki kondisi hampir mendekati keadaan ideal dengan menggunakan plot grafik Precision Recall Curve (PRC). Kata kunci: Binary Logistic Regression; DNS Passive; Precision-Recall Curve (PRC); Query Abnormal 

Copyrights © 2021






Journal Info

Abbrev

jurteksi

Publisher

Subject

Computer Science & IT

Description

JURTEKSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journal which is published by STMIK Royal Kisaran. This journal published twice a year on December and June. This journal contains a collection of research in information technology and computer ...