JUKI : Jurnal Komputer dan Informatika
Vol. 3 No. 1 (2021): JUKI : Jurnal Komputer dan Informatika, Edisi Mei 2021

Memprediksi Jumlah Siswa Baru Menggunakan Metode Backpropagation (STUDI KASUS: SMK HARAPAN BANGSA KUALA)

Kris Jayanti (STMIK Kaputama Binjai)
Katen Lumbanbatu (STMIK Kaputama Binjai)
Suci Ramadani (STMIK Kaputama Binjai)



Article Info

Publish Date
29 May 2021

Abstract

Artificial Neural Network (ANN) and time series data can be used for forecasting methods well. Artificial Neural Network is a method whose working principle is adapted from a mathematical model in humans or biological nerves. Neural networks are characterized by; (1) the pattern of connections between neurons (called architecture), (2) determining the weight of the connection (called training or learning), and (3) the activation function. The research objective was to obtain the best artificial neural network architecture, comparing the two methods of Backpropogation Neural Networks with the Radial Base Function Artificial Neural Network (RBF) method. This research is a research using real data (true experimental). This research was conducted at SMK Harapan Bangsa Kuala, which was obtained from 2015 to 2019. The results showed that for one iteration using the backpropagation method the result was 0,378197657 with a squared error 0.143033468, then the results achieved were not in accordance with the target.

Copyrights © 2021






Journal Info

Abbrev

JUKI

Publisher

Subject

Computer Science & IT

Description

JUKI: Jurnal Komputer dan Informatika (e-ISSN: 2722-4368) berfokus pada keilmuan yang ada tentang Komputer dan Informatika, yaitu Sistem Informasi, Rekayasa Perangkat Lunak, Jaringan & Multimedia, Teknologi Web & Mobile, serta kecerdasan Buatan & game. Akan tetapi JUKI juga tidak membatasi terhadap ...