International Journal of Electrical and Computer Engineering
Vol 11, No 5: October 2021

Source side pre-ordering using recurrent neural networks for English-Myanmar machine translation

May Kyi Nyein (University of Computer Studies)
Khin Mar Soe (University of Computer Studies)



Article Info

Publish Date
01 Oct 2021

Abstract

Word reordering has remained one of the challenging problems for machine translation when translating between language pairs with different word orders e.g. English and Myanmar. Without reordering between these languages, a source sentence may be translated directly with similar word order and translation can not be meaningful. Myanmar is a subject-objectverb (SOV) language and an effective reordering is essential for translation. In this paper, we applied a pre-ordering approach using recurrent neural networks to pre-order words of the source Myanmar sentence into target English’s word order. This neural pre-ordering model is automatically derived from parallel word-aligned data with syntactic and lexical features based on dependency parse trees of the source sentences. This can generate arbitrary permutations that may be non-local on the sentence and can be combined into English-Myanmar machine translation. We exploited the model to reorder English sentences into Myanmar-like word order as a preprocessing stage for machine translation, obtaining improvements quality comparable to baseline rule-based pre-ordering approach on asian language treebank (ALT) corpus.

Copyrights © 2021






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...