May Kyi Nyein
University of Computer Studies

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Source side pre-ordering using recurrent neural networks for English-Myanmar machine translation May Kyi Nyein; Khin Mar Soe
International Journal of Electrical and Computer Engineering (IJECE) Vol 11, No 5: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v11i5.pp4513-4521

Abstract

Word reordering has remained one of the challenging problems for machine translation when translating between language pairs with different word orders e.g. English and Myanmar. Without reordering between these languages, a source sentence may be translated directly with similar word order and translation can not be meaningful. Myanmar is a subject-objectverb (SOV) language and an effective reordering is essential for translation. In this paper, we applied a pre-ordering approach using recurrent neural networks to pre-order words of the source Myanmar sentence into target English’s word order. This neural pre-ordering model is automatically derived from parallel word-aligned data with syntactic and lexical features based on dependency parse trees of the source sentences. This can generate arbitrary permutations that may be non-local on the sentence and can be combined into English-Myanmar machine translation. We exploited the model to reorder English sentences into Myanmar-like word order as a preprocessing stage for machine translation, obtaining improvements quality comparable to baseline rule-based pre-ordering approach on asian language treebank (ALT) corpus.