PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
Vol 5 No 2 (2017): September 2017

Identifikasi Beras Berdasarkan Warna Menggunakan Adaptive Neuro Fuzzy Inference System

Alfianto, Muhammad Gilang (Unknown)
Whidhiasih, Retno Nugroho (Unknown)
Maimunah, Maimunah (Unknown)



Article Info

Publish Date
25 Feb 2018

Abstract

ABSTRACT Rice is the main food ingredient for Indonesian people. Through the National Standardization Agency, The Government has established a general requirement of rice, that is good quality rice which has a white color of whitewashed and low-quality rice which has a yellowish color (SNI 6128: 2015). To determine the different color of good quality rice and the low-quality one it often happens of wrong identification caused by different perception on the color. This problem can be solved by creating the system to identify good quality rice of IR64 and the low-quality one. The data used are primary data, in the form of good quality rice with grain image of 50 and the low-quality one is 50. The observation data used for trial is La * b * and Sa * b * using Adaptive Neuro-Fuzzy Inference Systems ( ANFIS). The observation variable Sa * b * produce higher identification compared to La*b*, with accuracy value is 90%. Keyword : rice, quality,color,classification ABSTRAK Beras merupakan bahan pangan utama masyarakat Indonesia. Pemerintah melalui badan Standarisasi Nasional telah menetapkan syarat umum beras, yaitu beras berkualitas baik yang mempunyai warna putih mengapur dan beras berkualitas rusak yang mempunyai warna kekuningan (SNI 6128:2015). Untuk menentukan perbedaan warna beras berkualitas baik dan rusak seringkali terjadi kesalahan identifikasi yang dikarenakan perbedaan persepsi warna. Hal tersebut dapat diatasi dengan membuat sistem untuk mengidentifikasi butir beras IR 64 yang berkualitas baik dan rusak. Data yang digunakan adalah data primer, yang berupa gambar butir beras berkualitas baik sebanyak 50 dan butir beras beras berkualitas rusak sebanyak 50. Variabel penduga yang dicobakan adalah La*b* dan Sa*b* dengan menggunakan metode Adaptive Neuro Fuzzy Inference Systems (ANFIS). Variabel penduga Sa*b* menghasilkan identifikasi yang lebih tinggi dibandingakan La*b* dengan nilai akurasi sebesar 90%. Kata kunci : beras, kualitas,warna,klasifikasi

Copyrights © 2017






Journal Info

Abbrev

piksel

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami ...