PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic
Vol 1 No 2 (2013): September 2013

PREDIKSI PINJAMAN KREDIT DENGAN SUPPORT VECTOR MACHINE DAN K-NEAREST NEIGHBORS PADA KOPERASI SERBA USAHA

Iriadi, Nandang (Unknown)
Leidiyana, Henny (Unknown)



Article Info

Publish Date
01 Mar 2018

Abstract

BSTRACTCooperatives as a form of organization that are important in promoting economic growth . Cooperatives bean alternative for people to get funds in an effort to improve their quality of life , day-to- day needs anddevelop the business . No doubt , lend funds to member cooperatives will surely emerge problems , such asmembers of the borrower paying the overdue installment of funds , misuse of funds for other purposes , thecustomer fails to develop its business so as to result in cooperative funds do not flow or it can lead to badcredit . In this research will be carried out loans prediction using data mining classification Support VectorMachine and k - Nearest Neighbors were then conducted a comparison of both methods . From the testresults to measure the performance of both methods using cross validation , confusion matrix and ROCcurves is known that Support Vector Machine has an accuracy value of 92.67 % followed by k -NearestNeighbors, which has a value of 88.67 % accuracy . Thus the Support Vector Machine method is includedin Verry Good Clasification because it has the accuracy of 92.67 % . Keywords: comparative, Support Vector Machines, k-Nearest Neighbors, Credit Analysis ABSTRAKKoperasi sebagai salah satu bentuk organisasi yang penting dalam meningkatkan pertumbuhan ekonomi.Koperasi simpan pinjam menjadi salah satu alternatif bagi masyarakat untuk mendapatkan dana dalamupaya memperbaiki taraf kehidupan, pemenuhan kebutuhan sehari-hari dan mengembangkan usaha.Tidakdipungkiri, memberikan pinjaman dana kepada anggota koperasi pasti akan muncul permasalahanpermasalahan, seperti anggota peminjam terlambat membayarkan cicilan dana, penyalahgunaan dana untukkeperluan lain, nasabah gagal mengembangkan usahanya sehingga dapat mengakibatkan dana di koperasitidak mengalir atau dapat mengakibatkan kredit macet. Dalam penelitian ini akan dilakukan prediksipinjaman kredit dengan menggunakan metode klasifikasi data mining Support Vector Machine dan kNearest Neighbor syang kemudian dilakukan komparasi kedua metode tersebut. Dari hasil pengujiandengan mengukur kinerja kedua metode tersebut menggunakan cross validation, confusion matrix dankurva ROC diketahui bahwa Support Vector Machine memiliki nilai akurasi 92.67% diikuti oleh k-NearestNeighbors yang memiliki nilai akurasi 88,67%. Dengan demikian Metode Support Vector Machine tersebuttermasuk dalam Verry Good Clasification karena memiliki nilai akurasinya sebesar 92.67%. Kata kunci: komparasi,Support Vector Machine,k-Nearest Neighbors ,Analisa Kredit

Copyrights © 2013






Journal Info

Abbrev

piksel

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal PIKSEL diterbitkan oleh Universitas Islam 45 Bekasi untuk mewadahi hasil penelitian di bidang komputer dan informatika. Jurnal ini pertama kali diterbitkan pada tahun 2013 dengan masa terbit 2 kali dalam setahun yaitu pada bulan Januari dan September. Mulai tahun 2014, Jurnal PIKSEL mengalami ...