Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol 4 No 10 (2020): Oktober 2020

Deteksi Pergerakan Arah Mata menggunakan Convolution Neural Network berdasarkan Facial Landmark

Muhammad Amin Nurdin (Fakultas Ilmu Komputer, Universitas Brawijaya)
Randy Cahya Wihandika (Fakultas Ilmu Komputer, Universitas Brawijaya)
Fitri Utaminingrum (Fakultas Ilmu Komputer, Universitas Brawijaya)



Article Info

Publish Date
24 Sep 2020

Abstract

The movement of the human eye can be useful in various fields, for example in security systems, health, transportation and design interface. In the design interface systems, eye movement used as an interactive system. The system can interact and responses to users by using eye movements. The video-based eye tracking method has the advantage of being practical and convenient during the detection process. This study uses the Convolution Neural Network (CNN) algorithm because it will utilize the advantages of the CNN method to classify and have the most significant results in object recognition. The results of this study indicate that the CNN model that good to use in the classification of eye direction based on facial landmarks is with 2 layers contain 32 filters and 64 filters, batch size 16 in image augmentation with 20 fully connected layers resulting loss value of 0.08, with an accuracy of 0.98 and 8.62 seconds in training time. Test results on videos taken 50 frames randomly three times, resulting in an average accuracy 0.95.

Copyrights © 2020






Journal Info

Abbrev

j-ptiik

Publisher

Subject

Computer Science & IT Control & Systems Engineering Education Electrical & Electronics Engineering Engineering

Description

Jurnal Pengembangan Teknlogi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya merupakan jurnal keilmuan dibidang komputer yang memuat tulisan ilmiah hasil dari penelitian mahasiswa-mahasiswa Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal ini diharapkan dapat mengembangkan penelitian ...