Knowledge Engineering and Data Science
Vol 4, No 1 (2021)

Face Images Classification using VGG-CNN

I Nyoman Gede Arya Astawa (Politeknik Negeri Bali)
Made Leo Radhitya (STMIK STIKOM Indonesia (STIKI))
I Wayan Raka Ardana (Politeknik Negeri Bali)
Felix Andika Dwiyanto (Association for Scientific Computing Electronics and Engineering (ASCEE))



Article Info

Publish Date
30 Jun 2021

Abstract

Image classification is a fundamental problem in computer vision. In facial recognition, image classification can speed up the training process and also significantly improve accuracy. The use of deep learning methods in facial recognition has been commonly used. One of them is the Convolutional Neural Network (CNN) method which has high accuracy. Furthermore, this study aims to combine CNN for facial recognition and VGG for the classification process. The process begins by input the face image. Then, the preprocessor feature extractor method is used for transfer learning. This study uses a VGG-face model as an optimization model of transfer learning with a pre-trained model architecture. Specifically, the features extracted from an image can be numeric vectors. The model will use this vector to describe specific features in an image.  The face image is divided into two, 17% of data test and 83% of data train. The result shows that the value of accuracy validation (val_accuracy), loss, and loss validation (val_loss) are excellent. However, the best training results are images produced from digital cameras with modified classifications. Val_accuracy's result of val_accuracy is very high (99.84%), not too far from the accuracy value (94.69%). Those slight differences indicate an excellent model, since if the difference is too much will causes underfit. Other than that, if the accuracy value is higher than the accuracy validation value, then it will cause an overfit. Likewise, in the loss and val_loss, the two values are val_loss (0.69%) and loss value (10.41%).

Copyrights © 2021






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...