Infotech: Journal of Technology Information
Vol 7, No 1 (2021): JUNI

PERBANDINGAN ALGORITMA K-NEAREST NEIGHBOR, DECISION TREE, DAN NAIVE BAYES UNTUK MENENTUKAN KELAYAKAN PEMBERIAN KREDIT

Muryono, Tupan Tri (Unknown)
Taufik, Ahmad (Unknown)
Irwansyah, Irwansyah (Unknown)



Article Info

Publish Date
30 Jun 2021

Abstract

The banking world in terms of providing credit to customers is a regular activity that has a large effect. In its application, non-performing loans or bad loans are often created due to poor credit analysis in the credit granting process, or from bad customers. The purpose of this study is to compare the results of algorithm accuracy between K-Nearest Neighbor (K-NN), Decision Tree, and Naive Bayes which results in the best accuracy will be implemented to determine creditworthiness. The attributes used in this study consisted of 11 attributes, namely marital status, number of dependents, age, last education, occupation, monthly income, home ownership, collateral, loan amount, length of loan and information as result attributes. The methods used in this research are K-Nearest Neighbor, Decision Tree, and Naive Bayes. From the results of evaluation and validation using k-5 fold that has been carried out using RapidMiner tools, the highest accuracy results from a comparison of 3 algorithms is using a decision tree (C4.5) of 98% in the 3rd test.

Copyrights © 2021






Journal Info

Abbrev

infoteh

Publisher

Subject

Computer Science & IT

Description

Jurnal Infotech adalah jurnal ilmiah yang berisi hasil penelitian yang ditulis oleh dosen, peneliti dan praktisi. Jurnal ini diharapkan untuk mengembangkan penelitian dan memberikan kontribusi yang berarti untuk meningkatkan sumber daya penelitian di bidang Teknologi Informasi dan Ilmu Komputer. ...