Jurnas Nasional Teknologi dan Sistem Informasi
Vol 7, No 2 (2021): Agustus 2021

Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest

Budi Prasojo (Jurusan Sistem Informasi Bisnis, Universitas Gunadarma)
Emy Haryatmi (Jurusan Sistem Informasi Bisnis, Universitas Gunadarma)



Article Info

Publish Date
02 Sep 2021

Abstract

Perkembangan di Indonesia saat ini tidak terlepas dari pernanan lembaga keuangan dengan salah satunya adalah perbankan. Bank memiliki peran dalam meningkatkan pertumbuhan dan perkembangan suatu Negara [1]. Perbankan memiliki fungsi sebagai lembaga yang memiliki peran sentral dalam meningkatkan pertumbuhan ekonomi suatu Negara. Dalam melakukan analisa pemberian kredit perbankan harus memerhatikan Prinsip-prinsip pemberian kredit[3]. besar kecilnya tingkat kredit yang disalurkan oleh bank kepada pihak lain ataupun masyarakat dipengaruhi oleh beberapa faktor [4]. Data dalam jumlah besar pada perbankan khususya perkreditan tersebut dapat diolah menggunakan beberapa metode tertentu akan memberikan informasi baru yang dapat mendukung dan membantu perbankan mengambil keputusan atau kebjakan, salah satu kebijakannya adalah dapat memprediksi kelayakan kredit pinjaman secara dini untuk mengetahui nasabah yang layak atau tidak layak, atau menggunakan salah satu teknik melakukan prediksi yang dapat digunakan adalah dengan teknik penggalian data atau data mining menggunakan algoritma random forest. Penelitian ini bertujuan untuk mengetahui penerapan metode klasifikasi dengan algoritma random forest serta menganalisis hasil terbaik dari algoritma random forest pada setiap kreditur. Variable yang dianalisis adalah V1 sampai dengan V20 dilakukan menggunakan perangkat lunak R. Tahapan metode penelitian menggunakan CRIPS-DM. untuk tahap pelatihan menggunakan 70% data dan Pengujian menggunakan 30% data secara acak dari 1000 data. Hasil performa dari algoritma random forest tersebut yaitu memiliki tingkat akurasi sebesar 0,77 atau 77% sehingga termasuk pada kategori klasifikasi fair model.

Copyrights © 2021






Journal Info

Abbrev

teknosi

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Jurnal ini menerbitkan artikel penelitian (research article), artikel telaah/studi literatur (review article/literature review), laporan kasus (case report) dan artikel konsep atau kebijakan (concept/policy article), di semua bidang : Geographical Information System, Enterpise Application, Bussiness ...