Budi Prasojo
Jurusan Sistem Informasi Bisnis, Universitas Gunadarma

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest Budi Prasojo; Emy Haryatmi
Jurnal Nasional Teknologi dan Sistem Informasi Vol 7, No 2 (2021): Agustus 2021
Publisher : Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v7i2.2021.79-89

Abstract

Perkembangan di Indonesia saat ini tidak terlepas dari pernanan lembaga keuangan dengan salah satunya adalah perbankan. Bank memiliki peran dalam meningkatkan pertumbuhan dan perkembangan suatu Negara [1]. Perbankan memiliki fungsi sebagai lembaga yang memiliki peran sentral dalam meningkatkan pertumbuhan ekonomi suatu Negara. Dalam melakukan analisa pemberian kredit perbankan harus memerhatikan Prinsip-prinsip pemberian kredit[3]. besar kecilnya tingkat kredit yang disalurkan oleh bank kepada pihak lain ataupun masyarakat dipengaruhi oleh beberapa faktor [4]. Data dalam jumlah besar pada perbankan khususya perkreditan tersebut dapat diolah menggunakan beberapa metode tertentu akan memberikan informasi baru yang dapat mendukung dan membantu perbankan mengambil keputusan atau kebjakan, salah satu kebijakannya adalah dapat memprediksi kelayakan kredit pinjaman secara dini untuk mengetahui nasabah yang layak atau tidak layak, atau menggunakan salah satu teknik melakukan prediksi yang dapat digunakan adalah dengan teknik penggalian data atau data mining menggunakan algoritma random forest. Penelitian ini bertujuan untuk mengetahui penerapan metode klasifikasi dengan algoritma random forest serta menganalisis hasil terbaik dari algoritma random forest pada setiap kreditur. Variable yang dianalisis adalah V1 sampai dengan V20 dilakukan menggunakan perangkat lunak R. Tahapan metode penelitian menggunakan CRIPS-DM. untuk tahap pelatihan menggunakan 70% data dan Pengujian menggunakan 30% data secara acak dari 1000 data. Hasil performa dari algoritma random forest tersebut yaitu memiliki tingkat akurasi sebesar 0,77 atau 77% sehingga termasuk pada kategori klasifikasi fair model.