METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi
Vol. 5 No. 2 (2021): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi

MODEL HIBRID GENETIC-XGBOOST DAN PRINCIPAL COMPONENT ANALYSIS PADA SEGMENTASI DAN PERAMALAN PASAR

Siringoringo, Rimbun (Unknown)
Perangin-angin, Resianta (Unknown)
Jamaluddin, Jamaluddin (Unknown)



Article Info

Publish Date
31 Oct 2021

Abstract

Extreme Gradient Boosting(XGBoost) is a popular boosting algorithm based on decision trees. XGBoost is the best in the boosting group. XGBoost has excellent convergence. On the other hand, XGBoost is a Hyper parameterized model. Determining the value of each parameter is classified as difficult, resulting in the results obtained being trapped in the local optimum situation. Determining the value of each parameter manually, of course, takes a lot of time. In this study, a Genetic Algorithm (GA) is applied to find the optimal value of the XGBoost hyperparameter on the market segmentation problem. The evaluation of the model is based on the ROC curve. Test result. The ROC test results for several SVM, Logistic Regression, and Genetic-XGBoost models are 0.89; 0.98; 0.99. The results show that the Genetic-XGBoost model can be applied to market segmentation and forecasting.

Copyrights © 2021






Journal Info

Abbrev

methomika

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance

Description

Sistem Informasi Sistem Informasi Manajemen Sistem Informasi Akuntansi Manajemen Basis Data Pengembangan Aplikasi Web dan Mobile Sistem Pendukung Keputusan Desain Grafis dan Multimedia Audit Sistem Informasi Topik-topik lain yang Relevan dengan bidang ilmu Manajemen Informatika Topik-topik lain yang ...