Berita kesehatan merupakan informasi yang paling dicari dan diminati pada masa pandemi, kebutuhan akan perlunya kiat-kiat kesehatan untuk masyarakat membuat berita kesehatan menduduki peringkat atas berita terpopuler. Disaat meningkatnya minat baca masyarakat terhadap berita, banyak pihak tidak bertanggung jawab memanfaatkan keuntungan tersebut dengan menyebarkan berita tidak benar yang menggiring opini masyarakat agar menyudutkan pihak tertentu dan berisi informasi yang melenceng dari pendapat ahli kesehatan. Oleh karena itu salah satu cara untuk mengatasi tersebarnya berita hoax penelitian ini melakukan klasifikasi berita kesehatan berbahasa Indonesia secara otomatis. Pada penelitian ini dataset yang digunakan sebanyak 100 berita kesehatan non-hoax dan 100 berita kesehatan hoax. Proses klasifikasi memalui tahap preproses, pembobotan kata, dan implementasi pada metode naïve bayes dan multimonial naïve bayes. Evaluasi model menggunakan metode 10-fold cross validation, metode multinomial naïve bayes bekerja lebih baik dan efisien daripada metode naïve bayes.
Copyrights © 2021