BIMASTER
Vol 3, No 03 (2014): BIMASTER

PENYELESAIAN PERSAMAAN DIFERENSIAL BERNOULLI MENGGUNAKAN METODE RUNGE KUTTA ORDE KELIMA

Mariatul Kiftiah, Rochmaini Arisa, Helmi, (Unknown)



Article Info

Publish Date
20 Oct 2014

Abstract

Persamaan diferensial (PD) Bernoulli merupakan salah satu bentuk dari persamaan diferensial biasa (PDB) orde satu. PD ini dapat diselesaikan secara analitik dan numerik. Penelitian ini bertujuan untuk menyelesaikan PD Bernoulli menggunakan metode Runge Kutta orde kelima dan menganalisis perbandingan hasil penyelesaian numerik terhadap hasil penyelesaian analitik. Metode Runge Kutta orde kelima yang digunakan yaitu metode Runge Kutta Butcher dan metode Runge Kutta Fehlberg. Penyelesaian numerik PD Bernoulli menggunakan metode Runge Kutta orde kelima dimulai dengan penentuan nilai awal x0 dan y0, serta nilai langkah Δx. Pada kasus PD Bernoulli tak linear, PD tersebut  dilinearisasi menggunakan transformasi Bernoulli sehingga diperoleh PD Bernoulli linear. Dari PD Bernoulli linear, dibentuk fungsi f(xi,yi), yang dilanjutkan dengan menghitung nilai evaluasi fungsi kj dengan j=1,2,...,6 dan nilai hampiran yi+1. Hasil penyelesaian numerik yang diperoleh selanjutnya dibandingkan dengan hasil penyelesaian analitik dengan mencari nilai galat dari kedua metode untuk mengetahui keakuratan nilai hampirannya. Perbandingan dari hasil penyelesaian numerik yang diperoleh menunjukkan bahwa metode Runge Kutta Butcher menghasilkan nilai hampiran yang lebih akurat daripada metode Runge Kutta Fehlberg. Kata Kunci: Runge Kutta Orde Kelima, PD Bernoulli, PD Linear, PD Tak Linear

Copyrights © 2014






Journal Info

Abbrev

jbmstr

Publisher

Subject

Decision Sciences, Operations Research & Management Mathematics

Description

Bimaster adalah Jurnal Ilmiah berkala bidang Matematika, Statistika dan Terapannya yang terbit secara online dan dikelola oleh Jurusan Matematika FMIPA ...