JOIV : International Journal on Informatics Visualization
Vol 5, No 4 (2021)

Feature Selection Approach to Detect DDoS Attack Using Machine Learning Algorithms

Azmi, Muhammad Aqil Haqeemi (Unknown)
Foozy, Cik Feresa Mohd (Unknown)
Sukri, Khairul Amin Mohamad (Unknown)
Abdullah, Nurul Azma (Unknown)
Hamid, Isredza Rahmi A. (Unknown)
Amnur, Hidra (Unknown)



Article Info

Publish Date
28 Dec 2021

Abstract

Distributed Denial of Service (DDoS) attacks are dangerous attacks that can cause disruption to server, system or application layer. It will flood the target server with the amount of Internet traffic that the server could not afford at one time. Therefore, it is possible that the server will not work if it is affected by this DDoS attack. Due to this attack, the network security environment becomes insecure with the possibility of this attack. In recent years, the cases related to DDoS attacks have increased. Although previously there has been a lot of research on DDoS attacks, cases of DDoS attacks still exist. Therefore, the research on feature selection approach has been done in effort to detect the DDoS attacks by using machine learning techniques. In this paper, to detect DDoS attacks, features have been selected from the UNSW-NB 15 dataset by using Information Gain and Data Reduction method. To classify the selected features, ANN, Naïve Bayes, and Decision Table algorithms were used to test the dataset. To evaluate the result of the experiment, the parameters of Accuracy, Precision, True Positive and False Positive evaluated the results and classed the data into attacks and normal class. Hence, the good features have been obtained based on the experiments. To ensure the selected features are good or not, the results of classification have been compared with the past research that used the same UNSW-NB 15 dataset. To conclude, the accuracy of ANN, Naïve Bayes and Decision Table classifiers has been increased by using this feature selection approach compared to the past research.

Copyrights © 2021






Journal Info

Abbrev

joiv

Publisher

Subject

Computer Science & IT

Description

JOIV : International Journal on Informatics Visualization is an international peer-reviewed journal dedicated to interchange for the results of high quality research in all aspect of Computer Science, Computer Engineering, Information Technology and Visualization. The journal publishes state-of-art ...