EDUMATIC: Jurnal Pendidikan Informatika
Vol 4, No 2 (2020): Edumatic: Jurnal Pendidikan Informatika

Perbandingan Prediksi Kualitas Kopi Arabika dengan Menggunakan Algoritma SGD, Naive Bayes, dan Random Forest

Veronica Retno Sari (Program Studi Informatika, Universitas Muhammadiyah Malang)
Feranandah Firdausi (Program Studi Informatika, Universitas Muhammadiyah Malang)
Yufis Azhar (Program Studi Informatika, Universitas Muhammadiyah Malang)



Article Info

Publish Date
20 Dec 2020

Abstract

Classification is one of the techniques that exist in data mining and is useful for grouping a data based on the attachment of the data with the sample data. The dataset that is used in this study is the coffee dataset taken from Dataset Coffee Quality Institute on the GitHub platform. The attributes that contained in the dataset are Aroma, Aftertaste, Flavor, Acidity, Balance, Body, Uniformity, Sweetness, Clean Cup, and Copper points. There are 3 classification methods that are used in this study, Stochastic Gradient Descent, Random Forest and Naive Bayes. The aim of this study is to find out which algorithm is the most effective to predict the coffee quality in the dataset. After that, the prediction results will be tested using K-Fold Cross Validation and Area Under the Curve (AUC) method. The results show that Stochastic Gradient Descent obtained the best accuracy results compared to the other two methods with an accuracy of 98% and increased to 99% after tested using K-fold Cross Validation and AUC method.

Copyrights © 2020






Journal Info

Abbrev

edumatic

Publisher

Subject

Computer Science & IT Education

Description

EDUMATIC: Jurnal Pendidikan Informatika (e-ISSN: 2549-7472) adalah jurnal ilmiah bidang pendidikan informatika yang diterbitkan oleh Universitas Hamzanwadi dua kali setahun yaitu pada bulan Juni dan Desember. Adapun fokus dan skup jurnal ini adalah (1) Komputer dan Informatika dalam Pendidikan; (2) ...