MES: Journal of Mathematics Education and Science
Vol 6, No 2 (2021): Edisi Mei

ANALISIS DINAMIKA PENYEBARAN COVID-19 DENGAN LAJU INSIDEN NONLINEAR

Nurul Qorima Putri (Institut Pertanian Bogor)
Paian Sianturi (Institut Pertanian Bogor)



Article Info

Publish Date
06 May 2021

Abstract

This research is focused on discussing the SEIQRS epidemic model for the spread of the COVID-19 disease with a nonlinear incidence rate. From the result of analysis of the SEIQR model obtained two equilibrium point these are diseases free equilibrium points and endemic equilibrium point. Then, the analysis of the completion behavior is done by using eigenvalues and stability around equilibrium point, the obtained result of the diseases free equilibrium point has two stability traits are saddle point, and stable. The stability diseases free equilibrium will be stable when  R0  1, if R0 1 then the equilibrium point is not stable (saddle point) and conversely the positive endemic equilibrium point will be spiral stable. In numerical analysis, it is done by varying the parameter values and using the fourth order runge-kutta approach.

Copyrights © 2021






Journal Info

Abbrev

mesuisu

Publisher

Subject

Mathematics

Description

MES (Journal of Mathematics Education and Science) diterbitkan secara berkala pada bulan April dan Oktober oleh Program Studi Pendidikan Matematika FKIP Universitas Islam Sumatera Utara. Jurnal ini membahas tentang kajian dibidang pendidikan matematika, pembelajaran matematika berbasis ICT dan ...