Jutsi: Jurnal Teknologi dan Sistem Informasi
Vol 2, No 1 (2022): February 2022

PENERAPAN DATA MINING MENGKLASIFIKASI POLA NASABAH MENGGUNAKAN ALGORITMA C4.5 PADA PEGADAIAN TANJUNGBALAI

Adela Ainun Damanik (Sekolah Tinggi Manajemen Informatika dan Komputer Royal)
Zulfi Azhar (Sekolah Tinggi Manajemen Informatika dan Komputer Royal)
Andy Sapta (Sekolah Tinggi Manajemen Informatika dan Komputer Royal)



Article Info

Publish Date
03 Feb 2022

Abstract

Abstract: There are so many people who make credit loans, but there are still many customers who pass the eligibility selection to borrow credit and add to the list of customers with bad credit at Pegadaian Tanjungbalai. In 2020, there were 60 Tanjungbalai residents who made credit loans with different amounts of funds. Of the 60 customers, 25 of them have had many credit arrears in the last few months. The Tanjungbalai Pegadaian party must be able to select customers whose payments are always stuck, especially in suppressing the NPL value. Customer assessment with a good data record needs to be done carefully for further credit. This customer data is very important to analyze in getting the pattern of customers who apply for pawn loans in order to get the current, substandard or bad category. The application of the C 4.5 algorithm to classify customer patterns at Pegadaian Tanjungbalai makes it easier for employees to classify patterns of prospective customers for credit applications, namely eligible and not eligible. Keywords: C4.5 Algorithm; customer data; credit; pawnshops.  Abstrak: Banyak sekali masyarakat yang melakukan pinjaman kredit tetapi masih saja banyak nasabah yang lolos dari seleksi kelayakan untuk meminjam kredit dan menambah daftar nasabah dengan kredit macet pada Pegadaian Tanjungbalai. Pada tahun 2020, tercatat terdapat 60 orang warga Tanjungbalai yang melakukan pinjaman kredit dengan besar dana yang berbeda-beda. Dari 60 orang nasabah tersebut, 25 orang diantaranya telah banyak memiliki tunggakan kredit selama beberapa bulan terakhir. Pihak  Pegadaian Tanjungbalai harus dapat  menyeleksi nasabah yang pembayarannya selalu  macet terutama dalam menekan nilai NPL. Penilaian  nasabah  dengan  record  data  yang  baik perlu dilakukan dengan cermat untuk kredit selanjutnya. Data nasabah ini sangat penting untuk dianalisa dalam mendapatkan pola  nasabah pemohon kredit gadai agar mendapatkan kategori lancar, kurang lancar atau macet. Penerapan algoritma C 4.5 untuk mengklasifikasi pola nasabah di Pegadaian Tanjungbalai memudahkan pegawai untuk mengelompokan pola calon nasabah permohonan kredit yaitu layak dan tidak layak. Kata Kunci: Algoritma C4.5; data nasabah; kredit; pegadaian.

Copyrights © 2022






Journal Info

Abbrev

jutsi

Publisher

Subject

Computer Science & IT

Description

JUTSI (Jurnal Teknologi dan Sistem Informasi) is a scientific journals that contains research results conducted by collaborating students with lecturers. JUTSI published third a year on February, June, ...