IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 11, No 1: March 2022

Privacy preserving human activity recognition framework using an optimized prediction algorithm

Kambala Vijaya Kumar (VIT-AP University)
Jonnadula Harikiran (VIT-AP University)



Article Info

Publish Date
01 Mar 2022

Abstract

Human activity recognition, in computer vision research, is the area of growing interest as it has plethora of real-world applications. Inferring actions from one or more persons captured through a live video has its immense utility in the contemporary era. Same time, protecting privacy of humans is to be given paramount importance. Many researchers contributed towards this end leading to privacy preserving action recognition systems. However, having an optimized model that can withstand any adversary models that strives to disclose privacy information. To address this problem, we proposed an algorithm known optimized prediction algorithm for privacy preserving activity recognition (OPA-PPAR) based on deep neural networks. It anonymizes video content to have adaptive privacy model that defeats attacks from adversaries. The privacy model enhances the privacy of humans while permitting highly accurate approach towards action recognition. The algorithm is implemented to realize privacy preserving human activity recognition framework (PPHARF). The visual recognition of human actions is made using an underlying adversarial learning process where the anonymization is optimized to have an adaptive privacy model. A dataset named human metabolome database (HMDB51) is used for empirical study. Our experiments with using Python data science platform reveal that the OPA-PPAR outperforms existing methods.

Copyrights © 2022






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...