Claim Missing Document
Check
Articles

Found 2 Documents
Search

Privacy preserving human activity recognition framework using an optimized prediction algorithm Kambala Vijaya Kumar; Jonnadula Harikiran
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 11, No 1: March 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v11.i1.pp254-264

Abstract

Human activity recognition, in computer vision research, is the area of growing interest as it has plethora of real-world applications. Inferring actions from one or more persons captured through a live video has its immense utility in the contemporary era. Same time, protecting privacy of humans is to be given paramount importance. Many researchers contributed towards this end leading to privacy preserving action recognition systems. However, having an optimized model that can withstand any adversary models that strives to disclose privacy information. To address this problem, we proposed an algorithm known optimized prediction algorithm for privacy preserving activity recognition (OPA-PPAR) based on deep neural networks. It anonymizes video content to have adaptive privacy model that defeats attacks from adversaries. The privacy model enhances the privacy of humans while permitting highly accurate approach towards action recognition. The algorithm is implemented to realize privacy preserving human activity recognition framework (PPHARF). The visual recognition of human actions is made using an underlying adversarial learning process where the anonymization is optimized to have an adaptive privacy model. A dataset named human metabolome database (HMDB51) is used for empirical study. Our experiments with using Python data science platform reveal that the OPA-PPAR outperforms existing methods.
DALF: An AI Enabled Adversarial Framework for Classification of Hyperspectral Images Tatireddy Subba Reddy; Jonnadula Harikiran
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 9, No 4: December 2021
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v9i4.3339

Abstract

Hyperspectral image classification is very complex and challenging process. However, with deep neural networks like Convolutional Neural Networks (CNN) with explicit dimensionality reduction, the capability of classifier is greatly increased. However, there is still problem with sufficient training samples. In this paper, we overcome this problem by proposing an Artificial Intelligence (AI) based framework named Deep Adversarial Learning Framework (DALF) that exploits deep autoencoder for dimensionality reduction, Generative Adversarial Network (GAN) for generating new Hyperspectral Imaging (HSI) samples that are to be verified by a discriminator in a non-cooperative game setting besides using aclassifier. Convolutional Neural Network (CNN) is used for both generator and discriminator while classifier role is played by Support Vector Machine (SVM) and Neural Network (NN). An algorithm named Generative Model based Hybrid Approach for HSI Classification (GMHA-HSIC) which drives the functionality of the proposed framework is proposed. The success of DALF in accurate classification is largely dependent on the synthesis and labelling of spectra on regular basis. The synthetic samples made with an iterative process and being verified by discriminator result in useful spectra. By training GAN with associated deep learning models, the framework leverages classification performance. Our experimental results revealed that the proposed framework has potential to improve the state of the art besides having an effective data augmentation strategy.