Biology, Medicine, & Natural Product Chemistry
Vol 11, No 1 (2022)

Potential Antimalarial Activity of Artemether/Lumefantrine/Doxycycline: A Study in Mice Infected with Plasmodium berghei

Udeme Owunari Georgewill (Department of Pharmacology, Faculty of Basic Clinical Sciences, University of Port Harcourt, Rivers State)
Elias Adikwu (Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Bayelsa State)



Article Info

Publish Date
11 Feb 2022

Abstract

Antimalarial drug resistance is one of the greatest challenges towards eradicating malaria. Exploring new combination therapies can overcome resistance challenges. The present study examined the antiplasmodial effect of artemether/lumefantrine/doxycycline (A/L/D) on a mouse model infected with Plasmodium berghei. Adult Swiss albino mice (22-30g) intraperitoneally infected with blood containing 1x107 Plasmodium berghei were randomly grouped and orally treated daily with D (2.2 mg/kg), A/L (1.71/13.7 mg/kg) and A/L/D. The negative control was treated daily with normal saline (0.2ml) whereas the positive control was treated daily with chloroquine (CQ) (10mg/kg). After treatment, blood samples were assessed for percentage parasitemia and biochemical parameters. Mice were observed for mean survival time (MST). D, A/L and A/L/D produced significant decreases in percentage parasitemia levels at p<0.05; p<0.01 and p<0.001, respectively when compared to negative control. In the curative test, D, A/L and A/L/D produced 60.4%, 70.3%, and 90.0% parasitemia inhibitions, respectively whereas CQ produced 76.0% parasitemia inhibition. D, A/L, A/L/D and CQ produced 63.2 %, 80.1%, 92.3% and 83.6% parasitemia inhibitions, respectively in the suppressive test. D, A/L, and A/L/D prevented Plasmodium berghei-induced alterations in biochemical parameters by increasing packed cell volume, red blood cells, hemoglobin, and high-density lipoprotein and decreasing white blood cells, total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels significantly at p<0.05 and p<0.01 and p<0.001, respectively when compared to the negative control. A/L/D produced significant antiplasmodial activity therefore, it may be used clinically for the treatment of malaria.

Copyrights © 2022






Journal Info

Abbrev

BIOMEDICH

Publisher

Subject

Biochemistry, Genetics & Molecular Biology Medicine & Pharmacology Public Health

Description

BIOLOGY, MEDICINE, & NATURAL PRODUCT CHEMISTRY, this journal is published to attract and disseminate innovative and expert findings in the fields of plant, animal, and microorganism secondary metabolite, and also the effect of natural product on biological system as a reference source for ...