Jurnal Gaussian
Vol 10, No 4 (2021): Jurnal Gaussian

Penerapan Text Mining untuk Melakukan Clustering Data Tweet Akun Blibli Pada Media Sosial Twitter Menggunakan K-Means Clustering

Syiva Multi Fani (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Siponegoro)
Rukun Santoso (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)
Suparti Suparti (Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro)



Article Info

Publish Date
31 Dec 2021

Abstract

Social media is computer-based technology that facilitates the sharing of ideas, thoughts, and information through the building of virtual networks and communities. Twitter is one of the most popular social media in Indonesia which has 78 million users. Businesses rely heavily on Twitter for advertising. Businesses can use these types of tweet content as a means of advertising to Twitter users by Knowing the types of tweet content that are mostly retweeted by their followers . In this study, the application of Text Mining to perform clustering using the K-means clustering method with the best number of clusters obtained from the Silhouette Coefficient method on the @bliblidotcom Twitter tweet data to determine the types of tweet content that are mostly retweeted by @bliblidotcom followers. Tweets with the most retweets and favorites are discount offers and flash sales, so Blibli Indonesia could use this kind of tweet to conduct advertising on social media Twitter because the prize quiz tweets are liked by the @bliblidotcom Twitter account followers.

Copyrights © 2021






Journal Info

Abbrev

gaussian

Publisher

Subject

Other

Description

Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM ...