Jurnal Informatika Upgris
Vol 7, No 2: Desember 2021

Deep Learning Untuk Entity Matching Produk Kamera Antar Online Store Menggunakan DeepMatcher

Adam Akbar (Institut Teknologi Sepuluh Nopember)
Nisrina Fadhilah Fano (Institut Teknologi Sepuluh Nopember)
Nur Aini Rakhmawati (Institut Teknologi Sepuluh Nopember)



Article Info

Publish Date
31 Dec 2021

Abstract

Dalam bidang ilmu Computer Science, Entity Matching telah menjadi tantangan tersendiri bagi beberapa peneliti. Beberapa berusaha mengembangkan algoritma entitiy matching untuk meningkatkan akurasi. Penelitian ini akan menguji DeepMatcher sebagai representasi Entity Matching yang menggunakan Deep Learning dengan melakukan pencocokan entitas terhadap studi kasus pencocokan produk kamera pada dua online store menggunakan empat algoritma pemelajaran berbeda yang dimiliki oleh DeepMatcher yakni Smooth Inverse Frequency, Bidirectional RNN, Decomposable Attention Model, dan Hybrid Model. Dengan membangun dataset dan model pemelajaran, DeepMatcher dapat melakukan pencocokan secara mandiri pada data yang belum dimasukkan sebelumnya. Hasil pencocokan tersebut akan diukur menggunakan f-measure untuk kemudian dianalisa kehandalannya. Hasil pengujian menunjukkan bahwa janis pemelajaran pada DeepMatcher yang paling cocok untuk digunakan dalam melakukan entity matching pada produk kamera antar online store adalah Bidirectional RNN dengan rata-rata skor F1 yang dihasilkan adalah 61,546

Copyrights © 2021






Journal Info

Abbrev

JIU

Publisher

Subject

Computer Science & IT

Description

Journal of Informatics UPGRIS published since June 2015 with frequency 2 (two) times a year, ie in June and December. The editors receive scientific writings from lecturers, teachers and educational observers about the results of research, scientific studies and analysis and problem solving closely ...