Penyebaran berita hoaks dengan konten video yang berulang pada media sosial merupakan fenomenayang sangat luar biasa dan muncul bukan hanya pada kalangan pengguna dewasa saja namun sudah kesegalalapisan usia, Efek yang paling terasa adalah timbulnya perpecahan di masyarakat karena penggunaan videoyang sudah pernah tayang atau ada sebelumnya menjadi bukti kuat untuk memvalidasi konten yang dilihatnya.Penting untuk mendeteksi berita hoaks dengan konten video yang berulang dan menghentikan efek negatifnyapada individu dan masyarakat. Pada penelitian ini pembuatan model arsitektur deteksi tingkat tinggi untuksistem analisis berita hoaks dengan konten video yang digunakan kembali atau berulang pada media sosial dikenalkan, dengan menggunakan deep learning video processing, speech to text dan beberapa fitur content-baseddan context-based rancangan model arsitektur ini dibuat. Konten hoaks dengan video yang berulang diharapkandapat dicegah penyebarannya jika bisa di filter terlebih dahulu sebelum muncul di lini masa. Diharapkan modelarsitektur ini dapat menjadi referensi untuk di buat menjadi real system
                        
                        
                        
                        
                            
                                Copyrights © 2022